Geodesic Flow on Extended Bott-Virasoro Group and Generalized Two Component Peakon Type Dual Systems
نویسنده
چکیده
This paper discusses several algorithmic ways of constructing integrable evolution equations based on Lie algebraic structure. We derive, in a pedagogical style, a large class of two component peakon type dual systems from their two component soliton equations counter part. We study the essential aspects of Hamiltonian flows on coadjoint orbits of the centrally extended semidirect product group ̂ Diff(S)⋉ C∞(S) to give a systematic derivation of the dual counter parts of various two component of integrable systems, viz., the dispersive water wave equation, the Kaup-Boussinesq system and the Broer-Kaup system, using moment of inertia operators method and the (frozen) Lie-Poisson structure. This paper essentially gives Lie algebraic explanation of OlverRosenau’s paper [31]. Mathematics Subject Classifications (2000): 53A07, 53B50.
منابع مشابه
Virasoro Action on Pseudo-differential Symbols and (Noncommutative) Supersymmetric Peakon Type Integrable Systems
Using Grozman’s formalism of invariant differential operators we demonstrate the derivation of N = 2 Camassa-Holm equation from the action of V ect(S1|2) on the space of pseudo-differential symbols. We also use generalized logarithmic 2-cocycles to derive N = 2 super KdV equations. We show this method is equally effective to derive Camassa-Holm family of equations and these system of equations ...
متن کاملGeodesic Flow and Two (Super) Component Analog of the Camassa–Holm Equation
We derive the 2-component Camassa–Holm equation and corresponding N = 1 super generalization as geodesic flows with respect to the H metric on the extended Bott-Virasoro and superconformal groups, respectively. Mathematics Subject Classifications (2000): 53A07, 53B50.
متن کاملEuler-Lagrange equations and geometric mechanics on Lie groups with potential
Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...
متن کاملOn the Geometry of the Virasoro-bott Group
We consider a natural Riemannian metric on the infinite dimensional manifold of all embeddings from a manifold into a Riemannian manifold, and derive its geodesic equation in the case Emb(R, R) which turns out to be Burgers’ equation. Then we derive the geodesic equation, the curvature, and the Jacobi equation of a right invariant Riemannian metric on an infinite dimensional Lie group, which we...
متن کاملVanishing Geodesic Distance for the Riemannian Metric with Geodesic Equation the Kdv-equation
The Virasoro-Bott group endowed with the right-invariant L2metric (which is a weak Riemannian metric) has the KdV-equation as geodesic equation. We prove that this metric space has vanishing geodesic distance.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008